eventosondulatorios.pdf (2,2 MB)

 

 

 
MOVIMIENTO ONDULATORIO
Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación se produce un desplazamiento periódico, u oscilación, alrededor de una posición de equilibrio. Puede ser una oscilación de moléculas de aire, como en el caso del sonido que viaja por la atmósfera, de moléculas de agua (como en las olas que se forman en la superficie del mar) o de porciones de una cuerda o un resorte. En todos estos casos, las partículas oscilan en torno a su posición de equilibrio y sólo la energía avanza de forma continua. Estas ondas se denominan mecánicas porque la energía se transmite a través de un medio material, sin ningún movimiento global del propio medio. Las únicas ondas que no requieren un medio material para su propagación son las ondas electromagnéticas; en ese caso las oscilaciones corresponden a variaciones en la intensidad de campos magnéticos y eléctricos.
Oscilación
En física, química e ingeniería, movimiento repetido de un lado a otro en torno a una posición central, o posición de equilibrio. El recorrido que consiste en ir desde una posición extrema a la otra y volver a la primera,pasando dos veces por la posición central, se denomina ciclo. El número de ciclos por segundo, o hercios (Hz), se conoce como frecuencia de la oscilación.
Cuando se pone en movimiento un péndulo o se puntea la cuerda de una guitarra, el péndulo y la cuerda acaban deteniéndose si no actúan sobre ellos otras fuerzas. La fuerza que hace que dejen de oscilar se denomina amortiguadora. Con frecuencia, estas fuerzas son fuerzas de rozamiento, pero en un sistema oscilante pueden existir otras fuerzas amortiguadoras, por ejemplo eléctricas o magnéticas.
Flameo
Un tipo peligroso de vibración es la oscilación repentina y violenta conocida como flameo. Este fenómeno se produce sobre todo en las superficies de control de los aviones, pero también ocurre en los cables eléctricos cubiertos de escarcha cuando la velocidad del viento es elevada. Uno de los casos de flameo más espectaculares provocó en 1940 el hundimiento de un puente en Tacoma, Estados Unidos. La causa fue un viento huracanado cuya velocidad potenció la vibración del puente.
En el flameo, la amplitud de vibración de una estructura puede aumentar tan rápidamente como para que ésta se desintegre casi de forma instantánea. Por eso, impedir el flameo es muy importante a la hora de diseñar puentes y aviones. En el caso de los aviones, el análisis de flameo suele complementarse con pruebas realizadas con una maqueta del avión en un túnel aerodinámico.
Frecuencia
Término empleado en física para indicar el número de veces que se repite en un segundo cualquier fenómeno periódico. La frecuencia es muy importante en muchas áreas de la física, como la mecánica o el estudio de las ondas de sonido.
Las frecuencias de los objetos oscilantes abarcan una amplísima gama de valores. Los temblores de los terremotos pueden tener una frecuencia inferior a 1, mientras que las veloces oscilaciones electromagnéticas de los rayos gamma pueden tener frecuencias de 1020 o más. En casi todas las formas de vibración mecánica existe una relación entre la frecuencia y las dimensiones físicas del objeto que vibra. Por ejemplo, el tiempo que necesita un péndulo para realizar una oscilación completa depende en parte de la longitud del péndulo; la frecuencia de vibración de la cuerda de un instrumento musical está determinada en parte por la longitud de la cuerda. En general, cuanto más corto es el objeto, mayor es la frecuencia de vibración.
En todas las clases de movimiento ondulatorio, la frecuencia de la onda suele darse indicando el número de crestas de onda que pasan por un punto determinado cada segundo. La velocidad de la onda (v) y su frecuencia (f) y longitud de onda (l) están relacionadas entre sí. La longitud de onda (la distancia entre dos crestas consecutivas) es inversamente proporcional a la frecuencia y directamente proporcional a la velocidad.
v = l.f
En una onda transversal, la longitud de onda es la distancia entre dos crestas o valles sucesivos. En una onda longitudinal, corresponde a la distancia entre dos compresiones o entre dos enrarecimientos sucesivos.
En el caso de una onda mecánica, su amplitud es el máximo desplazamiento de las partículas que vibran. En una onda electromagnética, su amplitud es la intensidad máxima del campo eléctrico o del campo magnético.
La frecuencia se expresa en hercios (Hz); una frecuencia de 1 Hz significa que existe 1 ciclo u oscilación por segundo. Las unidades como kilohercios (kHz) (miles de ciclos por segundo), megahercios (MHz) (millones de ciclos por segundo) y gigahercios (GHz) (miles de millones de ciclos por segundo) se usan para describir fenómenos de alta frecuencia como las ondas de radio. Estas ondas y otros tipos de radiación electromagnética pueden caracterizarse por sus longitudes de onda o por sus frecuencias.
Frecuencia natural
Cualquier objeto oscilante tiene una frecuencia natural, que es la frecuencia con la que tiende a vibrar si no se le perturba. Por ejemplo, la frecuencia natural de un péndulo de 1 m de longitud es de 0,5 Hz, lo que significa que el péndulo va y vuelve una vez cada 2 segundos. Si se le da un ligero impulso al péndulo cada 2 segundos, la amplitud de la oscilación aumenta gradualmente hasta hacerse muy grande. El fenómeno por el que una fuerza relativamente pequeña aplicada de forma repetida hace que la amplitud de un sistema oscilante se haga muy grande se denomina resonancia. Muchos problemas graves de vibración en ingeniería son debidos a la resonancia. Por ejemplo, si la frecuencia natural de la carrocería de un automóvil es la misma que el ritmo del motor cuando gira a una velocidad determinada, la carrocería puede empezar a vibrar o a dar fuertes sacudidas. Esta vibración puede evitarse al montar el motor sobre un material amortiguador, por ejemplo hule o goma, para aislarlo de la carrocería.
Tipos de ondas

 

Tipo De Onda.docx (15,3 kB)

Las ondas se clasifican según la dirección de los desplazamientos de las partículas en relación a la dirección del movimiento de la propia onda. Si la vibración es paralela a la dirección de propagación de la onda, la onda se denomina longitudinal. Una onda longitudinal siempre es mecánica y se debe a las sucesivas compresiones (estados de máxima densidad y presión) y enrarecimientos (estados de mínima densidad y presión) del medio. Las ondas sonoras son un ejemplo típico de esta forma de movimiento ondulatorio.

 

Tipo De Onda.docx (15,3 kB)

 

Otro tipo de onda es la onda transversal, en la que las vibraciones son perpendiculares a la dirección de propagación de la onda. Las ondas transversales pueden ser mecánicas, como las ondas que se propagan a lo largo de una cuerda tensa cuando se produce una perturbación en uno de sus extremos, o electromagnéticas,como la luz, los rayos X o las ondas de radio. En esos casos, las direcciones de los campos eléctrico y magnético son perpendiculares a la dirección de propagación. Algunos movimientos ondulatorios mecánicos, como las olas superficiales de los líquidos, son combinaciones de movimientos longitudinales y transversales, con lo que las partículas de líquido se mueven de forma circular.
Ondas Unidimensionales
Cuando una perturbación, en el estado físico de un sistema en un punto, se propaga conservando la forma de la perturbación, entonces, el proceso de propagación se llama onda . Si la forma de la perturbación se modifica a lo largo de la propagación, el proceso se llama difusión.
Los elementos básicos de la propagación ondulatoria son:
Se emite la perturbación en el estado del canal, se propaga transportando energía en forma de información. No se propaga materia.

 

Ondas Unidimensionales.docx (19,2 kB)

 

Representación de ondas
La perturbación puede representarse por una variable escalar (onda escalar) o vectorial (onda vectorial).

Onda

Escalar

La presión p en un gas (sonido).

Vectorial

Transversal

La deformación de una cuerda.

Longitudinal

La deformación de un resorte.

Modelo matemático de una onda unidimensional
Describe la propagación a través del canal, es decir, el valor de la perturbación en cada punto p del canal y en cada instante. El estado del canal estará dado por una función onda.
 

Modelo matemático de una onda unidimensional.docx (20,9 kB)

 

Comportamiento de las ondas
La velocidad de una onda en la materia depende de la elasticidad y densidad del medio. En una onda transversal a lo largo de una cuerda tensa, por ejemplo, la velocidad depende de la tensión de la cuerda y de su densidad lineal o masa por unidad de longitud. La velocidad puede duplicarse cuadruplicando la tensión, o reducirse a la mitad cuadruplicando la densidad lineal. La velocidad de las ondas electromagnéticas en el vacío (entre ellas la luz) es constante y su valor es de aproximadamente 300.000 km/s. Al atravesar un medio material esta velocidad varía sin superar nunca su valor en el vacío.
Cuando dos ondas se encuentran en un punto, el desplazamiento resultante en ese punto es la suma de los desplazamientos individuales producidos por cada una de las ondas. Si los desplazamientos van en el mismo sentido, ambas ondas se refuerzan; si van en sentido opuesto, se debilitan mutuamente. Este fenómeno se conoce como interferencia.
Cuando dos ondas de igual amplitud, longitud de onda y velocidad avanzan en sentido opuesto a través de un medio se forman ondas estacionarias. Por ejemplo, si se ata a una pared el extremo de una cuerda y se agita el otro extremo hacia arriba y hacia abajo, las ondas se reflejan en la pared y vuelven en sentido inverso. Si suponemos que la reflexión es perfectamente eficiente, la onda reflejada estará media longitud de onda retrasada con respecto a la onda inicial. Se producirá interferencia entre ambas ondas y el desplazamiento resultante en cualquier punto y momento será la suma de los desplazamientos correspondientes a la onda incidente y la onda reflejada. En los puntos en los que una cresta de la onda incidente coincide con un valle de la reflejada, no existe movimiento; estos puntos se denominan nodos. A mitad de camino entre dos nodos, las dos ondas están en fase, es decir, las crestas coinciden con crestas y los valles con valles; en esos puntos, la amplitud de la onda resultante es dos veces mayor que la de la onda incidente; por tanto, la cuerda queda dividida por los nodos en secciones de una longitud de onda. Entre los nodos (que no avanzan a través de la cuerda), la cuerda vibra transversalmente.
Las ondas estacionarias aparecen también en las cuerdas de los instrumentos musicales. Por ejemplo, una cuerda de violín vibra como un todo (con nodos en los extremos), por mitades (con un nodo adicional en el centro), por tercios. Todas estas vibraciones se producen de forma simultánea; la vibración de la cuerda como un todo produce el tono fundamental y las restantes vibraciones generan los diferentes armónicos.
En mecánica cuántica, la estructura del átomo se explica por analogía con un sistema de ondas estacionarias. Gran parte de los avances de la física moderna se basan en elaboraciones de la teoría de las ondas y el movimiento ondulatorio.

 

Movimiento Armonico Simple (M.A.S)

 

El movimiento armónico simple (m.a.s.), también denominado movimiento vibratorio armónico simple (m.v.a.s.), es un movimiento periodico, oscilatorio y vibratorio en ausencia de fricción, producido por la acción de una fuerza recuperadora que es directamente proporcional a la posición pero en sentido opuesto. Y que queda descrito en función del tiempo por una función senoidal (seno o coseno). Si la descripción de un movimiento requiriese más de una función armónica, en general sería un movimiento armónico, pero no un m.a.s.

En el caso de que la trayectoria sea rectilínea, la partícula que realiza un m.a.s. oscila alejándose y acercándose de un punto, situado en el centro de su trayectoria, de tal manera que suposicion  en función del tiempo con respecto a ese punto es una sinusoide. En este movimiento, la fuerza que actúa sobre la partícula es proporcional a su desplazamiento respecto a dicho punto y dirigida hacia éste.

 

Movimiento Periodico 

 

Un movimiento periódico es el tipo de evolución temporal que presenta un sistema cuyo estado se repite exactamente a intervalos regulares de tiempo.

El tiempo mínimo T necesario para que el estado del sistema se repita se llama periodo. Si el estado del sistema se representa por S, se cumplirá:

 

 

Movimiento Circular Uniforme

 

 

En física, el movimiento circular uniforme describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.

Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleracion que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

 

 

Ángulo y velocidad angular

El ángulo abarcado en un movimiento circular es igual al cociente entre la longitud del arco de circunferencia recorrida y el radio.

La longitud del arco y el radio de la circunferencia son magnitudes de longitud, por lo que el desplazamiento angular es una magnitud adimensional, llamada radian. Un radián es un arco de circunferencia de longitud igual al radio de la circunferencia, y la circunferencia completa tiene   radianes.

La velocidad angular es la variación del desplazamiento angular por unidad de tiempo:

 

Partiendo de estos conceptos se estudian las condiciones del movimiento circular uniforme, en cuanto a su trayectoria y espacio recorrido, velocidad y aceleración, según el modelo físico cinemático.

 

Vector De Posicion   

 

Movimiento Circular Uniforme.docx (59,6 kB)

 

 

 

Aceleracion Centripeta

 

 

La aceleración centrípeta (también llamada aceleración normal) es una magnitud relacionada con el cambio de dirección de la velocidad de una partícula en movimiento cuando recorre una trayectoria curvilínea.

Cuando una partícula se mueve en una trayectoria curvilínea, aunque se mueva con rapidez constante (por ejemplo el MCU), su velocidad cambia de dirección, ya que es un vector tangente a la trayectoria, y en las curvas dicha tangente no es constante.

La aceleración centrípeta, a diferencia de la aceleracion centrifuga, está provocada por una fuerza real requerida para que cualquier observador inercial pudiera dar cuenta de como se curva la trayectoria de una partícula que no realiza un movimiento rectilíneo.

 

 

Aceleración centrípeta.docx (22,2 kB)

 

 

 

Graficas (Sen - Cos)

 

 

 

Amplitud

Es la medida q indica una variacion total con respecto a un desplazamiento o cualquier otra magnitud fisica q represente una variacion en el tiempo

 

SISTEMA  MASA-RESORTE

 Otro ejemplo de Movimiento Armónico Simple es el sistema masa-resorte que consiste en una masa “m” unida a un resorte, que a su vez se halla fijo a una pared, como se muestra en la figura. Se supone movimiento sin rozamiento sobre la superficie horizontal.

El resorte es un elemento muy común en máquinas. Tiene una longitud normal, en ausencia de fuerzas externas. Cuando se le aplican fuerzas se deforma alargándose o acortándose en una magnitud “x” llamada“deformación”. Cada resorte se caracteriza mediante una constante “k” que es igual a la fuerza por unidad de deformación que hay que aplicarle. La fuerza que ejercerá el resorte es igual y opuesta a la fuerza externa aplicada (si el resorte deformado está en reposo) y se llama fuerza recuperadora elástica.

Dicha fuerza recuperadora elástica es igual a :

 En el primer dibujo tenemos el cuerpo de masa “m” en la posición de equilibrio, con el resorte teniendo su longitud normal.

 Si mediante una fuerza externa lo apartamos de la misma (segundo dibujo), hasta una deformación “x = + A” y luego lo soltamos, el cuerpo empezará a moverse con M.A.S. oscilando en torno a la posición de equilibrio. En este dibujo la fuerza es máxima pero negativa, lo que indica que va hacia la izquierda tratando de hacer regresar al cuerpo a la posición de equilibrio.

 Llegará entonces hasta una deformación “x = -A” (tercer dibujo). En este caso la deformación negativa indica que el resorte está comprimido. La fuerza será máxima pero positiva, tratando de volver al cuerpo a su posición de equilibrio.

A través de la Segunda Ley de Newton relacionamos la fuerza actuante (recuperadora) con la aceleración a(t).

FENOMENOS ONDULATORIOS

hay algunas caracteristicas que son propias de las ondas, por ejemplo: podemos escuchar un sonido proveniente del otro lado de un muro, aunque no estemos viendo la fuente que lo emite, ¿Por qué las ondas del mar bordean las orillas cuando encuentran  una abertura formada por un rompeolas?      (difracción)

*Reflexión

Es el cambio de dirección  que experimenta una onda cuando choca con un obstáculo.

IMAGEN

 

Sacudiendo una cuerda rápidamente se genera un pulso ondulatorio que avanza por la cuerda hacia la izquierda (A). Si el extremo de la cuerda puede moverse libremente, el pulso vuelve por la cuerda por el mismo lado (C1). Si la cuerda está atada a la pared, el pulso vuelve por la cuerda por el lado puesto (C2). Si el extremo está libre, el pulso tendra  el doble de la amplitud origial en el punto de reflexión (B1); si el extremo 

Ley Fundamental de la Reflexión

La medida del ángulo de incidencia es igual a la medida del ángulo de reflexión.

IMAGEN

Refracción

Es el cambio de velocidad de propagación que experimenta una onda cuando pasa de un medio a otro, sin varian su frecuencia.

IMAGEN

Ley Fundamental de la Refración

La razón entre el seno del ángulo de incidencia y el seno del ángulo de refracción es igual a la razón entre las velocidades del movimiento ondulatorio en los dos medios.

IMAGEN

Difracción

Es el fenomeno ondulatorio que se presenta cuando la onda pasa a travéz de un orificio de tamañano menor que la longitud de onda  o pasa cerca de un obstáculo, manifestándoce porque la onda se curva al pasar por la abertura y bordea el obstáculo.

IMAGEN

Polarización

Cuando los panos de vibración de una onda se restringen a uno solo, se dice que la onda se ha polarizado. Este fenómeno se presenta en las ondas trasversales, más no en las longitudínales, por lo tanto no lo experimenta el sonido.

IMAGEN

Interferencia

Cuando dos ondas se encuentran en un punto, el desplazamiento resultante en ese punto es la suma de dos desplazamientos individuales producido por cada una de las ondas. Si los desplazamientos van en el mismo sentido, ambas ondas se refuerzan; si van en sentdo opuesto, se debilitan mutuamente.

IMAGEN

 

Interferencia de ondas

Cuando dos pulsos que avanzan por una cuerda se encuentran,sus amplitudes se suman formando un pulso resultante. Si los pulsos son idénticos pero avanzan por lados opuestos de la cuerda, la suma de las amplitudes es cero y la cuerda aparecerá plana durante un momento (A). Esto se conoce interferencia destructiva. Cuando dos pulsos idénticos se desplazan por el mismo lado, la suma de amplitudes es el doble de la de un único pulso (B). Esto se llama interferencia constructiva.

IMAGEN


 

SONIDO

Archivo: Onde compresión impulso 1d 30 petit.gif

fenomeno qe involucre la propagación en forma de ondas elasticas  (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.

El sonido en Música es una onda sonora. El sonido humanamente audible consiste en ondas sonoras que producen oscilaciones de la presión de las ondas que se producen, que son convertidas en ondas mecánicas en el oído humano y percibidas por el cerebro. La propagación del sonido es similar en los fluidos, donde el sonido toma la forma de fluctuaciones de presión.En los cuerpos sólidos la propagación del sonido involucra variaciones del estado tensional del medio.

 

La propagación del sonido involucra transporte de energia sin transporte de materia, en forma de ondas mecánicas que se propagan a través de la materia solida, liquida o gaseosa. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.

El sonido es un fenómeno vibratorio transmitido en forma de ondas. Para que se genere un sonido es necesario que vibre alguna fuente. Las vibraciones pueden ser transmitidas a través de diversos medios elásticos, entre los más comunes se encuentran el aire y el agua. La fonética acústica concentra su interés especialmente en los sonidos del habla: cómo se generan, cómo se perciben, y cómo se pueden describir gráfica y/o cuantitativamente.

PROPAGACION DEL SONIDO

Ciertas características de los fluidos y de los sólidos influyen en la onda de sonido. Es por eso que el sonido se propaga en los sólidos y en los líquidos y gases pero con mayor rapidez que en los gases. En general cuanto mayor sea la comrensibilidad  (1/K) del medio tanto menor es la velocidad del sonido. También la densidad es un factor importante en la velocidad de propagación, en general a mayor sea la densidad (ρ), a igualdad de todo lo demás, tanto mayor es la velocidad de la propagación del sonido. La velocidad del sonido se relaciona con esas magnitudes mediante:
 

v \varpropto \sqrt{\frac{K}{\rho}}
 

VOZ HUMANA

(espectrografía de la voz humana revela su rico contenido armónico.)

 

La voz humana se produce por la vibración de las cuerdas vocales, lo cual genera una onda sonora que es combinación de varias frecuencias y sus correspondientes armonicos. La cavidad buco-nasal sirve para crear  ondas cuasiestacionarias por lo que ciertas frecuencias denominadas formantes. Cada segmento de sonido del habla viene caracterizado por un cierto espectro de frecuencias o distribución de la energía sonora en las diferentes frecuencias. El oído humano es capaz de identificar diferentes formantes de dicho sonido y percibir cada sonido con formantes diferentes como cualitativamente diferentes, eso es lo que permite por ejemplo distinguir dos vocales. Típicamente el primer formante, el de frecuencia más baja está relacionada con la abertura de la vocal que en última instancia está relacionada con la frecuencia de las ondas estacionarias que vibran verticalmente en la cavidad. El segundo formante está relacionado con la vibración en la dirección horizontal y está relacionado con si la vocal es anterior, central o posterior.

La voz masculina tiene un tono fundamental de entre 100 y 200 Hz, mientras que la voz femenina es más aguda, típicamente está entre 150 y 300 Hz. Las voces infantiles son aún más agudas. Sin el filtrado por resonancia que produce la cavidad buco nasal nuestras emisiones sonoras no tendrían la claridad necesaria para ser audibles. Ese proceso de filtrado es precisamente lo que permite generar los diversos formantes de cada unidad segmental del habla.

 

CUALIDADES DEL SONIDO

Las cuatro cualidades básicas del sonido son la altura, la duración, la intensidad y el timbre o color.

 

Cualidad Característica Rango
Altura o tono Frecuencia de onda Agudo, medio, grave
Intensidad Amplitud de onda Fuerte, débil o suave
Timbre Armónicos de onda o forma de la onda. Análogo a la textura Depende de las características de la fuente emisora del sonido (por analogía: áspero, aterciopelado, metálico, etc)
Duración Tiempo de vibración Largo o corto

 

Altura-->
 

Define si el sonido es grave, agudo o medio, y viene determinada por la frecuencia fundamental de las ondas sonoras, medida en ciclos por segundo o hercios (Hz).

  • vibración lenta = baja frecuencia = sonido grave.
  • vibración rápida = alta frecuencia = sonido agudo.

Para que los humanos podamos percibir un sonido, éste debe estar comprendido entre el rango de audición de 20 y 20.000 Hz. Por debajo de este rango tenemos los infrasonidos y por encima los ultrasonidos. A esto se le denomina rango de frecuencia audible. Cuanta más edad se tiene, este rango va reduciéndose tanto en graves como en agudos.

En la música occidental se fueron estableciendo tonos determinados llamados notas, cuya secuencia de 12 (C, C#, D, D#, E, F, F#, G, G#, A, A#, B) se va repitiendo formando octavas, en cada una de éstas se duplica la frecuencia. La diferencia entre distintas notas se denomina interval.

 

Duracion-->

Es el tiempo durante el cual se mantiene un sonido. Podemos escuchar sonidos largos, cortos, muy cortos, etc. Los únicos instrumentos acústicos que pueden mantener los sonidos el tiempo que quieran, son los de cuerda como el arco, el violín, y los de viento (utilizando la respiración circular o continua); pero por lo general, los instrumentos de viento dependen de la capacidad pulmonar, y los de cuerda según el cambio del arco producido por el ejecutante.

 

                          

                            

 

La intensidad 

Es la cantidad de energía acústica que contiene un sonido, es decir, lo fuerte o suave de un sonido. La intensidad viene determinada por la potencia, que a su vez está determinada por la amplitud y nos permite distinguir si el sonido es fuerte o débil.

La intensidad del sonido se divide en intensidad física e intensidad auditiva, la primera esta determinada por la cantidad de energía que se propaga, en la unidad de tiempo, a través de la unidad de área perpendicular a la dirección en que se propaga la onda. Y la intensidad auditiva que se fundamenta en la ley psicofísica de Weber-Fechner, que establece una relación logarítmica entre la intensidad física del sonido que es captado, y la intensidad física mínima audible por el oído humano.

Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (140 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibelios (dB) en honor al científico e inventor Alexander Graham Bell.

En música se escriben así:

Nombre

Intensidad

Pianississimo (ppp)

más suave que pianissimo

Pianissimo (pp)

muy suave

Piano (p)

suave, sonido delicado

Mezzo piano (mp)

medio suave

Mezzo forte (mf)

medio fuerte

Forte (f)

fuerte

Fortissimo (ff)

muy fuerte

Fortississimo (fff)

más fuerte que fortissimo

El timbre 

 

Una misma nota suena distinta si la toca una flauta, un violín, una trompeta, etc. Cada instrumento tiene un timbre que lo identifica o lo diferencia de los demás. Con la voz sucede lo mismo. El sonido dado por un hombre, una mujer, un/a niño/a tienen distinto timbre. El timbre nos permitirá distinguir si la voz es áspera, dulce, ronca o aterciopelada. También influye en la variación del timbre la calidad del material que se utilice. Así pues, el sonido será claro, sordo, agradable o molesto.

 

CUERDAS

Una cuerda es el elemento vibratorio que origina el sonido en los instrumentos musicales de cuerda, tales como la guitarra, el contrabajo, el arpa, el piano, o miembros de la familia de los violines, descendientes lejanos de antiguos instrumentos como vihuelas, fidulas, rabeles y salterios.

Las cuerdas son segmentos formados por un material flexible que permanecen en tensión de modo que puedan vibrar libremente, sin entorpecimiento que provocase una distorsión de la onda acústica.

 

Cuerdas de piano 2.jpg: Archivo

Tubos sonoros

Se llaman tubos sonoros aquellos que contienen una columna gaseosa (columna de aire) capaz de producir sonido al ser convenientemente excitada. El cuerpo sonoro es la columna gaseosa, y no el tubo que la contiene; en efecto, éste tiene la importante función de definir la forma de aquella pero fuera de esto, influye relativamente poco sobre los fenómenos sonoros. Los tubos sonoros pueden ser cerrados, es decir, que poseen una sola abertura y tubos abiertos, que poseen dos o más.

vibracion de la columna de aire contenida en un tubo 

Las columnas de aire contenidas en los tubos sonoros se comportan, desde ciertos puntos de vista, como cuerdas musicales, por lo tanto las columnas de aire vibrantes poseen nodos, o sea puntos donde la vibración es nula, y vientres, equidistantes de los anteriores, donde la vibración alcanza su máxima amplitud.

La vibración de las columnas de aire es longitudinal; los nodos serán por tanto, puntos de condensación y los vientres puntos de dilatación o rarefacción; en los extremos cerrados siempre se producen nodos y en los extremos abiertos generalmente se producen vientres. El punto de excitación no puede ser un nodo, pero no necesita ser un vientre, pudiendo estar en un punto intermedio. No es necesario que las aberturas de un tubo coincidan con los extremos, pudiendo éstos estar cerrados y haber una o más aberturas en otras partes del tubo (la gaita).

Una columna de aire puede vibrar con toda su longitud o dividida en segmentos iguales lo mismo que las cuerdas; en el primer caso se obtiene el sonido llamado fundamental, y en los otros los armónicos: segundo, si la columna vibra dividida en mitades; tercero, si vibra en tercios, etc.

Tomando como punto de partida el que en los extremos de un tubo abierto, sólo pueden haber vientres de vibración, el tubo producirá su fundamental cuando vibre con un nodo único en su centro. Cuando el tubo produce su segundo armónico, producirá dos nodos y tres vientres; cuando produce su tercer amónico, producirá tres nodos y 4 vientres, y así sucesivamente.

En los Tubos Cerrados, la onda se forma con un nodo en el extremo cerrado y un vientre en el extremo abierto.

A igualdad de longitud de tubo, el tubo abierto produce un sonido de frecuencia doble que el cerrado. Los tubos abiertos emiten la serie completa de armónicos correspondientes a su longitud, mientras que los cerrados, emiten sólo los armónicos de orden impar. Como tubo cerrado está la Flauta Travesera y como tubos abiertos todos los demás: Clarinetes*, Oboes, Fagotes, Saxofones, Trompetas, Trompas, etc.

 

Clasificación de los tubos sonoros

Los tubos sonoros se pueden clasificar de las siguientes formas:

1.     Según el modo de excitación de la columna de aire

2.     Según la obtención de la escala

3.     Según su forma interior

1.- Según el modo de excitación de la columna de aire pueden ser: tubos de embocadura, tubos de lengüeta y tubos de lengüeta labial o membranácea.

Tubos de embocadura son tubos sonoros que poseen una abertura convenientemente dispuesta llamada embocadura, uno de cuyos bordes es biselado. Contra este borde incide una corriente de aire que se divide en dos ramas; la rama que penetra en el tubo origina pequeñas vibraciones que a su vez excitan por resonancia la columna aérea contenida en el tubo. Estos se pueden dividir en:

·         Tubos de embocadura directa. Los tubos de embocadura directa son aquellos en que la corriente de aire es dirigida sobre la embocadura directamente por los labios del ejecutante. La siguiente figura muestra una embocadura de flauta travesera que es el prototipo de los instrumentos de embocadura directa.

·         Tubos de embocadura indirecta son aquellos donde la corriente de aire, producida mecánicamente o por el ejecutante, pasa por un tubo llamado portaviento antes de incidir sobre el bisel de la embocadura. Las siguientes figuras representa la parte superior de una flauta de pico y a un tubo de órgano, el órgano tiene varias clases de tubos, siendo uno de ellos “tubos de bisel”.

La forma de los tubos de embocadura es muy variada: los hay cónicos, cilíndricos, prismáticos y de tipos intermedios. Se construyen siempre rectos, aunque no hay ningún inconveniente teórico que impida doblarlos. Pueden ser abiertos o cerrados.

Tubos de lengüeta están formados por pequeñas laminillas elásticas, generalmente de metal o de madera (caña) que sujetas a un soporte de manera conveniente, vibran al paso de una corriente aérea, produciendo sonido; se las clasifica según su mayor o menor libertad de movimiento en dos tipos diferentes: libres y batientes.

·         Tubos de lengüetas libres aquellas que vibran libremente a uno y otro lado del plano que determinan cuando están en reposo; esto se obtiene con un soporte cuyos únicos puntos de contacto con la lengüeta son aquellos en que ésta se halla fijada a aquel. Las lengüetas libres son siempre de metal; se utilizan en el armonio, el acordeón, la armónica y otros aerófonos libres.

·         Tubos de lengüetas batientes aquellas que baten contra el soporte al cual están sujetas. En estas las vibraciones se hallan restringidas por la presencia del soporte, cosa que no ocurre con las lengüetas libres.

Las lengüetas batientes se dividen a su vez en simples y dobles, según el tipo de soporte que utilizan.
 

o    Tubos de lengüetas batientes simples, llamadas corrientemente lengüetas simples (cañas), son aquellas que se colocan sobre los bordes de una abertura contra los cuales baten.
Son utilizadas por los clarinetes, saxofones y por los juegos de lengüeta del órgano, siendo de metal en este instrumento y de madera (caña) en los primeros.

o    Tubos de lengüetas batientes dobles, llamadas corrientemente lengüetas dobles, son aquellas que utilizan como soporte otra lengüeta contra la cual baten, batiendo ésta a su vez contra la primera.
Las lengüetas batientes dobles se construyen siempre de madera (caña) siendo utilizadas por los oboes y fagotes. También utilizan lengüetas dobles algunos instrumentos como la gaita (la gaita presenta la particularidad de utilizar simultáneamente lengüetas simples y dobles).

La frecuencia de los sonidos que produce una lengüeta batiente aislada, varía enormemente con la presión del aire que la excita; esto se observa fácilmente soplando a través de una lengüeta de oboe sin asociarla al tubo del instrumento. En cambio, la frecuencia de los sonidos que producen las lengüetas libres no depende de la presión del aire que las excita, variando sólo su intensidad.

·         Tubos de lengüeta labial o membranácea. Los principales son trompas, trompetas, trombones y tuba, en este tipo de instrumentos los labios del ejecutante actúan del mismo modo que una lengüeta batiente doble, por lo cual se dice que forman una lengüeta doble membranácea.
En estos instrumentos la boquilla es muy diferente a la los instrumentos de lengüeta y de embocadura, pues se la construye con el objeto de ser adosada a los labios del ejecutante en lugar de ser introducida entre ellos.

2.- Según la obtención de las escalas. Si se ordenaran según su frecuencia los parciales que pueden obtenerse con un tubo sonoro, la escala sería, en el mejor de los casos, igual a la serie de armónicos de la fundamental del tubo. Es evidente que los recursos musicales de un instrumento de esta clase, cuya escala estuviera formada por los parciales de una sola columna aérea, serían muy reducidos. Ahora bien, con la excepción del órgano que posee un tubo sonoro para cada sonido, los instrumentos de viento poseen un tubo sonoro único, debiendo recurrirse por esta razón a diversos artificios para variar la longitud de la columna aérea que contienen, y obtener así un número suficiente de columnas aéreas para formar su escala con las fundamentales y los parciales de dichas columnas.

Los procedimientos seguidos para obtener columnas aéreas de diferente longitud sobre un mismo tubo sonoro pueden reducirse a dos:

Perforar sobre sus paredes orificios de tamaño y posición convenientes que permitan variar la longitud acústica del tubo, determinando la longitud de la columna aérea en el momento en que se destapa o cierra un orificio dado. (Tubos con orificios: instrumentos de viento madera, etc.)

Estos orificios se controlan mediante los dedos o mediante llaves; éstas son palancas o sistemas de palancas que permiten controlar aquellos orificios cuyo diámetro excede al ancho de la yema de los dedos o cuya situación sobre el tubo no permite un control directo. La siguiente figura representa una llave cualquiera; la almohadilla destinada a cubrir el orificio controlado por la llave, que se halla sobre la cara interna de ésta, se llama “zapatilla”.

No es indiferente el diámetro de los orificios que se perforan sobre un tubo sonoro; para una misma longitud acústica, un orificio de diámetro grande producirá un sonido de frecuencia algo mayor (más agudo) que uno de diámetro más pequeño.

En ciertos instrumentos como el fagot, los orificios exteriores no indican la posición real del orificio sobre la pared interna del instrumento, pues se perforan oblicuamente para agruparlos mejor bajo el control de la mano.

Los instrumentos que utilizan este sistema de orificios forman su escala variando la longitud acústica de sus tubos; cada columna aérea produce su fundamental y un corto número de parciales que se obtienen variando la fuerza del soplo y la tensión de los labios; en los tubos de lengüeta, la obtención de parciales se facilita mediante un portavoz (llaves de octava), pequeño orificio situado cerca del extremo superior de estos tubos, que actúa sobre las columnas de aire como un dedo apoyado ligeramente sobre una cuerda vibrante, es decir, favoreciendo la producción de los parciales de dichas columnas. Algunos instrumentos utilizan dos portavoces (saxofón).

Variar su longitud real mediante porciones de tubo que se conectan al tubo principal obteniéndose así las columnas aéreas deseadas (Tubos de longitud variable: instrumentos de viento metal, etc.). Se utilizan tres procedimientos:

·         La Vara (Trombón de varas): Consiste en cortar el tubo del instrumento y adaptar a sus extremos un tubo en forma de “U”, cuyas ramas enchufan telescópicamente sobre las ramas del tubo fijo. Mediante la vara, la longitud del tubo puede ser variada continuamente, permitiendo obtener diferentes sonidos.

·         Los Pistones (Trompetas, Trombón de pistones, etc.): Generalmente cuando la longitud es variada mediante pistones, uno de éstos, que se considera el primero, produce una serie de parciales situados un tono más bajo que la serie original; otro, considerado segundo, produce un descenso de un semitono y un tercero, produce un descenso de tono y medio. Los pistones pueden utilizarse simultáneamente para lograr descensos mayores. Algunos instrumentos poseen pistones que provocan descensos mayores de un tono y medio (cuarto y quinto pistón)

·         Las Válvulas Rotatorias (Trompas, Tubas, etc.): Todo lo que he dicho respecto de los pistones puede aplicarse igualmente a las válvulas rotatorias

3.- Según su forma interior, que puede o no coincidir con la exterior pueden ser: cónicos, cilíndricos y prismáticos.

Los tubos prismáticos se utilizan solamente en ciertos registros de órgano y en algunos instrumentos primitivos, los demás instrumentos poseen tubos cilíndricos (flauta travesera,....) cónicos (saxofón, fagot.....) o de tipos intermedios (clarinete, oboe, trompeta.....).

 CLASIFICACIÓN DE LOS TUBOS SONOROS

 Según el Modo de Excitación de la Columna de Aire

 Tubos de Embocadura

Directa

 Flta. Travesera,…

Indirecta

 Flta. de pico, Tubos órgano,…

 Tubos de Lengüeta

 Libres

 Arcordeón, Armónica,…

 Batientes

 Simples

 Clte., Sax., Tubos órgano…

 Dobles

 Oboe, Fagot,…

 Tubos de lengüeta labial o membranácea

 Trompeta, Trompa, trombón, Tuba…

 Según la obtención de la escala

 Tubos con orificios

 Instrumentos de Viento Madera,…

 Tubos de longitud variable

 Vara

 Trombón de varas

 Pistones

 Trompeta,…

Válvulas Rotatorias

 Trompa, Tuba,…

 Según su Forma Interior

 Cónicos

 Saxofón, Fagot,…

 Cilíndricos

 Flauta travesera, Clarinete,…

 Prismáticos

 Instr. Primitivos, algunos tubos del órgano…

EFECTO DOPPLER

Se llama efecto Doppler a las variaciones aparentes en la frecuencia de una onda cualquiera (sonora, luminosa, en el agua, etcétera), causadas por el movimiento ya sea de la fuente emisora, ya sea del receptor de la onda sonora o de ambos.

A modo de recordatorio, analicemos la siguiente escena:

x

La moto (es la fuente sonora) emite un sonido, supongamos de 200 Hz de frecuencia, que viaja por el espacio hacia todas direcciones a una velocidad de 343 metros por segundo. A su vez, la moto lleva una velocidad propia, que supondremos de 80 km por hora (unos 22 m/s).

 

la luz

Se llama luz (del latín lux, lucis) a la parte de la radiación electromagnética que puede ser percibida por el ojo humano. En física, el término luz se usa en un sentido más amplio e incluye todo el campo de la radiación conocido como espectro electromagnético, mientras que la expresión luz visible señala específicamente la radiación en el espectro visible.

La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones.

El estudio de la luz revela una serie de características y efectos al interactuar con la materia, que permiten desarrollar algunas teorías sobre su naturaleza.

Teoría ondulatoria

Descripción

Esta teoría, desarrollada por Christiaan Huygens, considera que la luz es una onda electromagnética, consistente en un campo eléctrico que varía en el tiempo generando a su vez un campo magnético y viceversa, ya que los campos eléctricos variables generan campos magnéticos (ley de Ampère) y los campos magnéticos variables generan campos eléctricos (ley de Faraday). De esta forma, la onda se autopropaga indefinidamente a través del espacio, con campos magnéticos y eléctricos generándose continuamente. Estas ondas electromagnéticas son sinusoidales, con los campos eléctrico y magnético perpendiculares entre sí y respecto a la dirección de propagación.

Vista lateral (izquierda) de una onda electromagnética a lo largo de un instante y vista frontal (derecha) de la misma en un momento determinado. De color rojo se representa el campo magnético y de azul el eléctrico.

Para poder describir una onda electromagnética podemos utilizar los parámetros habituales de cualquier onda:

·         Amplitud (A): Es la longitud máxima respecto a la posición de equilibrio que alcanza la onda en su desplazamiento.

·         Periodo (T): Es el tiempo necesario para el paso de dos máximos o mínimos sucesivos por un punto fijo en el espacio.

·         Frecuencia (ν): Número de oscilaciones del campo por unidad de tiempo. Es una cantidad inversa al periodo.

·         Longitud de onda (λ): Es la distancia lineal entre dos puntos equivalentes de ondas sucesivas.

·         Velocidad de propagación (V): Es la distancia que recorre la onda en una unidad de tiempo. En el caso de la velocidad de propagación de la luz en el vacío, se representa con la letra c.

La velocidad, la frecuencia, el periodo y la longitud de onda están relacionadas por las siguientes ecuaciones:

 

c = \lambda \cdot \nu = \frac{\lambda}{T}

Teoría corpuscular

Descripción

La teoría corpuscular estudia la luz como si se tratase de un torrente de partículas sin carga y sin masa llamadas fotones, capaces de transportar todas las formas de radiación electromagnética. Esta interpretación resurgió debido a que, la luz, en sus interacciones con la materia, intercambia energía sólo en cantidades discretas (múltiplos de un valor mínimo) de energía denominadas cuantos. Este hecho es difícil de combinar con la idea de que la energía de la luz se emita en forma de ondas, pero es fácilmente visualizado en términos de corpúsculos de luz o fotones.

Fenómenos corpusculares

Max Planck.

Existen tres efectos que demuestran el carácter corpuscular de la luz. Según el orden histórico, el primer efecto que no se pudo explicar por la concepción ondulatoria de la luz fue la radiación del cuerpo negro.

Un cuerpo negro es un radiador teóricamente perfecto que absorbe toda la luz que incide en él y por eso, cuando se calienta se convierte en un emisor ideal deradiación térmica, que permite estudiar con claridad el proceso de intercambio de energía entre radiación y materia. La distribución de frecuencias observadas de la radiación emitida por la caja a una temperatura de la cavidad dada, no se correspondía con las predicciones teóricas de la física clásica. Para poder explicarlo,Max Planck, al comienzo del siglo XX, postuló que para ser descrita correctamente, se tenía que asumir que la luz de frecuencia ν es absorbida por múltiplos enteros de un cuanto de energía igual a , donde h es una constante física universal llamada Constante de Planck.

 E=hv

En 1905Albert Einstein utilizó la teoría cuántica recién desarrollada por Planck para explicar otro fenómeno no comprendido por la física clásica: el efecto fotoeléctrico. Este efecto consiste en que cuando un rayo monocromático de radiación electromagnética ilumina la superficie de un sólido (y, a veces, la de un líquido), se desprenden electrones en un fenómeno conocido como fotoemisión o efecto fotoeléctrico externo. Estos electrones poseen una energía cinética que puede ser medida electrónicamente con un colector con carga negativa conectado a la superficie emisora. No se podía entender que la emisión de los llamados "fotoelectrones" fuese inmediata e independiente de la intensidad del rayo. Eran incluso capaces de salir despedidos con intensidades extremadamente bajas, lo que excluía la posibilidad de que la superficie acumulase de alguna forma la energía suficiente para disparar los electrones. Además, el número de electrones era proporcional a la intensidad del rayo incidente. Einstein demostró que el efecto fotoeléctrico podía ser explicado asumiendo que la luz incidente estaba formada de fotones de energía , parte de esta energía 0 se utilizaba para romper las fuerzas que unían el electrón con la materia, el resto de la energía aparecía como la energía cinética de los electrones emitidos:

\frac{1}{2} m v_{max}^2 = h (\nu - \nu_0)

donde m es la masa del electrón, vmáx la velocidad máxima observada, ν es la frecuencia de la luz iluminante y ν0 es la frecuencia umbral característica del sólido emisor.

La demostración final fue aportada por Arthur Compton que observó como al hacer incidir rayos X sobre elementos ligeros, estos se dispersaban con menor energía y además se desprendían electrones (fenómeno posteriormente denominado en su honor como efecto Compton). Compton, ayudándose de las teorías anteriores, le dio una explicación satisfactoria al problema tratando la luz como partículas que chocan elásticamente con los electrones como dos bolas de billar. El fotón, corpúsculo de luz, golpea al electrón: el electrón sale disparado con una parte de la energía del fotón y el fotón refleja su menor energía en su frecuencia. Las direcciones relativas en las que salen despedidos ambos están de acuerdo con los cálculos que utilizan la conservación de la energía y el momento.

Otro fenómeno que demuestra la teoría corpuscular es la presión luminosa.

rayos luminosos

reflexion de la luz 

 

angulo incidente

Se denomina ángulo de incidencia (o punto de incidencia) al punto de reflexión donde se ubica la normal. de luz sobre algún objeto reflectivo cóncavo ó convexo. El espejo convexo es un espejo de forma esférica y se pueden observar imágenes a la inversa.

En el caso de las superficies planas el ángulo incidente es igual al ángulo reflejado, y su punto de referencia es la recta normal.

En este caso, el ángulo de incidencia se denomina θ1.

angulo de reflexion

La reflexión es el cambio de dirección de una onda magnética, que al estar en contacto con la superficie de separación entre dos medios cambiantes, de tal forma que regresa al medio inicial. Ejemplos comunes son la reflexión de la luz, el sonido y las ondas en el agua. La luz es una forma de energía. Gracias a ello puedes ver tu imagen reflejada en un espejo, en la superficie del agua o un piso muy brillante. Esto se debe a un fenómeno llamado reflexión de la luz. La reflexión ocurre cuando los rayos de luz que inciden en una superficie chocan en ella, se desvían y regresan al medio que salieron formando un ángulo igual al de la luz incidente, muy distinta a la refracción.

leyes de snell

La ley de Snell es una fórmula utilizada para calcular el ángulo de refracción de la luz al atravesar la superficie de separación entre dos medios de propagación de la luz (o cualquier onda electromagnética) con índice de refracción distinto. El nombre proviene de su descubridor, el matemático holandés Willebrord Snel van Royen (1580-1626). La denominaron "Snell" debido a su apellido pero le pusieron dos "l" por su nombre Willebrord el cual lleva dos "l".

La misma afirma que la multiplicación del índice de refracción por el seno del ángulo de incidencia es constante para cualquier rayo de luz incidiendo sobre la superficie separatriz de dos medios. Aunque la ley de Snell fue formulada para explicar los fenómenos de refracción de la luz se puede aplicar a todo tipo de ondas atravesando una superficie de separación entre dos medios en los que la velocidad de propagación de la onda varíe.

descripcion optica

n1 y n2 son los índices de refracción. de los materiales. La línea entrecortada delimita la línea normal, además delimita cuándo la luz cambia de un medio a otro. Snell también hace referencia a la refracción, la cual es la línea imaginaria perpendicular a la superficie. Los ángulos o son los ángulos que se forman con la línea normal, siendo o1 el ángulo de la onda incidente y o2 el ángulo de la onda refractada.

Consideremos dos medios caracterizados por índices de refracción n1 y n2 separados por una superficie S. Los rayos de luz que atraviesen los dos medios se refractarán en la superficie variando su dirección de propagación dependiendo del cociente entre los índices de refracción n1 y n2.

Para un rayo luminoso con un ángulo de incidencia o1 sobre el primer medio, ángulo entre la normal a la superficie y la dirección de propagación del rayo, tendremos que el rayo se propaga en el segundo medio con un ángulo de refracción o2 cuyo valor se obtiene por medio de la ley de Snell.

ESPEJOS ESFERICOS

Espejos planos

Un espejo plano es toda superficie pulimentada destinada a dar imágenes por reflexión.

Imágenes dadas por espejos planos

La imagen virtual de un punto, es el punto donde convergen las prolongaciones de todos los rayos reflejados correspondientes a rayos que han salido del objeto. Las características de una imagen dada por un espejo plano son:

·         Es del mismo tamaño del objeto.

·         Es simétrica respecto al objeto, está a la misma distancia detrás del espejo que el objeto delante del espejo.

·         Es virtual.

Espejos esféricos

Al sacar de una esfera un casquete esférico se obtiene un espejo esférico, el espejo cóncavo si la superficie reflectora es la interior y el espejo convexo si la superficie reflectora es la exterior. 


  • Elementos de un espejo esférico: 
  • Campo del espejo: Conjunto de puntos del espacio por los cuales pueden pasar los rayos luminosos que inciden en la superficie reflectora.
  • Centro de curvatura: Punto del espacio equidistante de todos los puntos del espejo.
  • Radio de curvatura: Distancia del centro de curvatura al espejo. Punto del espacio equidistante de todos los puntos del espejo.
  • Vértice del espejo: Punto medio del espejo.
  • Eje principal: Recta que pasa por el centro de curvatura y el vértice del espejo.
  • Plano focal: Plano perpendicular al eje principal situado a una distancia r/2 del espejo.
  • Foco: Punto de intersección del plano focal y el eje principal.
  • Distancia focal: Distancia que hay desde el foco hasta el vértice del espejo.
  • Espejos esféricos. formación de imágenes por espejos esféricos

Un espejo esférico está caracterizado por su radio de curvatura R. En el caso de los espejos esféricos solo existe un punto focalF=F´=R/2 cuya posición coincide con el punto medio entre el centro del espejo y el vértice del mismo. Se encontrará a la izquierda del vértice para los espejos cóncavos y a la derecha para los espejos convexos.

El aumento del espejo será A =y´/y y dependerá de la curvatura del espejo y de la posición del objeto.

Formación de imágenes

La construcción de imágenes es muy sencilla si se utilizan los rayos principales:

  • Rayo paralelo: Rayo paralelo al eje óptico que parte de la parte superior del objeto. Después de refractarse pasa por el foco imagen.
  • Rayo focal: Rayo que parte de la parte superior del objeto y pasa por el foco objeto, con lo cual se refracta de manera que sale paralelo . Después de refractarsepasa por el foco imagen.
  • Rayo radial: Rayo que parte de la parte superior del objeto y está dirigido hacia el centro de curvatura del dioptrio. Este rayo no se refracta y continúa en la mismas dirección ya que el ángulo de incidencia es igual a cero.

n=C/v


Obsérvese que para el caso de  (rayos incidentes de forma perpendicular a la superficie) los rayos refractados emergen con un ángulo  para cualquier .

La simetría de la ley de Snell implica que las trayectorias de los rayos de luz son reversibles. Es decir, si un rayo incidente sobre la superficie de separación con un ángulo de incidencia  se refracta sobre el medio con un ángulo de refracción , entonces un rayo incidente en la dirección opuesta desde el medio 2 con un ángulo de incidencia  se refracta sobre el medio 1 con un ángulo .

Una regla cualitativa para determinar la dirección de la refracción es que el rayo en el medio de mayor índice de refracción se acerca siempre a la dirección de la normal a la superficie. La velocidad de la luz en el medio de mayor índice de refracción es siempre menor.

La ley de Snell se puede derivar a partir del principio de Fermat, que indica que la trayectoria de la luz es aquella en la que los rayos de luz necesitan menos tiempo para ir de un punto a otro. En una analogía clásica propuesta por el físico Richard Feynman, el área de un índice de refracción más bajo es substituida por una playa, el área de un índice de refracción más alto por el mar, y la manera más rápida para un socorrista en la playa de rescatar a una persona que se ahoga en el mar es recorrer su camino hasta ésta a través de una trayectoria que verifique la ley de Snell, es decir, recorriendo mayor espacio por el medio más rápido y menor en el medio más lento girando su trayectoria en la intersección entre ambos.

clasificacion de los espejos esfericos 

Cóncavos: son aquellos que presentan concavidad hacia el espacio de donde proviene la luz incidente.

Convexos: que presentan una convexidad hacia el espacio de donde proviene la luz incidente.

Hay que distinguir entre los espejos cóncavos y los convexos:

Espejos cóncavos:

  1. Objeto situado a la izquierda del centro de curvatura. La imagen es real, invertida y situada entre el centro y el foco. Su tamaño es menor que el objeto.
  2. Objeto situado en el centro de curvatura. La imagen es real, invertida y situada en el mismo punto. Su tamaño igual que el objeto.
  3. Objeto situado entre el centro de curvatura y el foco. La imagen es real, invertida y situada a la izquierda del centro de curvatura. Su tamaño es mayor que el objeto.
  4. Objeto situado en el foco del espejo. Los rayos reflejados son paralelos y la imagen se forma en el infinito.
  5. Objeto situado a la derecha del foco. La imagen es virtual,  y conserva su orientación. Su tamaño es mayor que el objeto.

https://acacia.pntic.mec.es/jruiz27/images/ESPEJOJPEG.jpg

a) Objeto situado a la izquierda del centro de curvatura. La imagen es real, invertida y situada entre el centro y el foco. Su tamaño es menor que el objeto.

b) Objeto situado en el centro de curvatura. La imagen es real, invertida y situada en el mismo punto. Su tamaño igual que el objeto.

c) Objeto situado entre el centro de curvatura y el foco. La imagen es real, invertida y situada a la izquierda del centro de curvatura. Su tamaño es mayor que el objeto.

d) Objeto situado en el foco del espejo. Los rayos reflejados son paralelos y la imagen se forma en el infinito.

e) Objeto situado a la derecha del foco. La imagen es virtual,  y conserva su orientación. Su tamaño es mayor que el objeto.

 

 Construir la imagen que forma un espejo cóncavo en todas las posiciones posibles de un objeto.

Espejos convexos:

Se produce una situación en la que la imagen es virtual, derecha y más pequeña que el objeto.

https://acacia.pntic.mec.es/jruiz27/images/espejoconvexojpeg.jpg

Se produce una situación en la que la imagen es virtual, derecha y más pequeña que el objeto.

convegnio de los signos




refraccion de la luz

Cuando la luz pasa de un medio a otro, su velocidad cambia. Eso hace que pueda variar la dirección del rayo (si no incide de forma perpendicular). El fenómeno se llama refracción.

Lentes

 l

lLas lentes son cuerpos transparentes que tienen la propiedad de modificar el tamaño visual de los objetos que se ven a través de ellas.


l

"Lente es un cuerpo transparente limitado
 por dos caras: una curva y la otra plana o curva".

Las caras curvas pueden ser esféricas, cilíndricas, parabólicas, etc.
Las lentes más comunes se basan en el distinto grado de refracción que experimentan los rayos luminosos al atravesar los distintos puntos de la lente.
Se utilizan para corregir problemas de visión en gafas, anteojos o lentillas.


lent
  


Lentes-Clasificación


Lentes delgadas, que son aquellas que tienen caras esféricas y cuyo espesor es muy pequeño comparado con su diámetro. 
Éstas pueden clasificarse en:
  1. Convergentes       l
  2. Divergentes

ll


 


  
 


Convergentes: son más gruesas en su centro que en sus bordes y tienden a concentrar los rayos luminosos que las atraviesan.
Pueden ser:  
                       


  • Biconvexas    l
  • Planoconvexas
  • Meniscoconvergente      


 


Divergentes: son más gruesas en los bordes que en el centro y tienden a separar los rayos lminosos que inciden sobre ellas.
Pueden ser:



  • Bicóncavas
  • Planocóncavas   l
  • Meniscodivergente    


 
                                            

 


l
Las lentes convergentes también se denominan positivas.
La lupa es una lente convergente

Muchos instrumentos ópticos utilizan lentes en su construcción. 

lEntre ellos los lentes o anteojos para corregir defectos de la visión: miopía e hipermetropía, las lupas, los microscopios, los telescopios, los catalejos y las cámaras fotográficas, por ejemplo.

instrumentos opticos

 El ojo humano.

De forma muy simplificada, podemos considerar que el ojo humano está constituido por una lente (formada por la córnea y el cristalino) y una superficie fotosensible (la retina). La luz entra en el ojo a través de la pupila, cuyo tamaño se puede variar por contracción o expansión de una membrana denominada iris. 

Instrumentos ópticos:


i   c   i
 

Los instrumentos ópticos están constituidos por diversas clases de lentes, prismas y/o espejos.
Entre ellos, se pueden mencionar: la lupa, los prismáticos,el largavista, el anteojo astronómico, la cámara fotográfica, el microscopio compuesto, el proyector de diapositivas, el episcopio, el retroproyector, el telescopio, etc.

 

La cámara fotográfica

c        c         c


c             c
 


Elementos de la cámara Fotográfica

f

Objetivo : sistema óptico compuesto por varias lentes, que canaliza la luz que reflejan los objetos situados ante él.

Obturador: sistema mecánico o electrónico que permite el paso de la luz a través del sistema óptico durante un tiempo determinado.

Diafragma: sistema mecánico o electrónico que gradúa la mayor o menor intensidad de luz que debe pasar durante el tiempo que está abierto el obturador.                           

Sistema de enfoque: gradúa la posición del objetivo, para que la imagen se forme totalmente donde está la placa sensible.

Sistema de deslizamiento de la película: sistema que permite desplazar una nueva película antes de cada toma.

Visor: sistema óptico que permite encuadrar el campo visual que ha de ser fotografiado.

Caja: estuche hermético a la luz y de color contiene todos los elementos anteriores y constituye el cuerpo de la cámara.

 


El microscopio simple y compuesto

m

Antes de la invención del microscopio, 
no era posible la observación de objetos extremadamente pequeños. 

El microscopio es un instrumento óptico diseñado para hacer visibles al ojo humano objetos de dimensiones inferiores a 0,1 mm.

Se atribuye su invención al fabricante 

de lentes holandés, Zacarías Jansen en el año 1590 y a Galileo en el año 1606, pero Anton Van Leeuwenhoeck fue uno de los primeros que aparte de fabricarlo lo usó con fines biológicos.          

m


Hoy en día hay varios tipos de microscopios, básicamente se pueden clasificar por el tipo de iluminación que emplean. Pueden ser microscopios que utilizan como fuente de iluminación "radiaciones de luz invisible" y microscopios que utilizan como fuente de iluminación el "espectro de luz visible". 
Los microscopios que funcionan con el espectro 
de luz visible son de dos tipos:
                El microscopio simples

Consiste simplemente en una lupa o, una lente convergente, que puede ir montada de diferentes formas según la finalidad que se le destine.  





 

                              
 El microscopio compuesto u óptico:

mEs un instrumento óptico que tiene como misión aumentar el tamaño de los objetos que son realmente muy pequeños y que no se pueden ver a simple vista, a su vez puede ser "monocular" , "binocular", etc.

                                                           

El telescopio

t terte


                 


La figura que se ilustra a continuación explicatecomo se obtiene la imagen 
en un telescopio refractor empleando para laobservación astronómica. Las 
lentes utilizadas son biconvexas tanto en el objetivo como en el ocular y la imagen que se obtiene es virtual e invertida.

t
 


   

El objeto a se encuentra a gran distancia del telescopio. La imagen que se obtiene de este objeto es real, menor e invertida y se forma entre el foco de la lente ocular y la lente; sirve a su vez como objeto para el ocular que produce de esta imagen otra imagen, derecha y virtual.

                                      
t

 

miopia

La miopía es un defecto del ojo en el que el punto focal se forma delante de la retina, en lugar de en la misma retina como sería normal.

Esta anomalía ocasiona dificultad para ver de lejos. El sujeto verá mal todo aquel objeto situado a partir de una cierta distancia.

La causa más frecuente de miopía es un aumento en el diámetro anteroposterior del globo ocular. También puede ser debida a un aumento de la capacidad de refracción del cristalino o al aumento en la curvatura de la córnea como ocurre en el queratocono. Se trata mediante el uso de gafas correctoras, lentillas, con una intervención quirúrgica con láser (LASIK, PRK) o con la colocación de lentes intraoculares.

 

Hipermetropía

La hipermetropía es un defecto del ojo, en el cual los rayos de luz que inciden en el mismo procedentes del infinito, forman el foco en un punto situado detrás de la retina. Se trata por lo tanto de un defecto refractivo inverso al de la miopía.

A diferencia de la miopía no es progresiva y tampoco suele producir complicaciones. Los niños afectados de hipermetropía no suelen presentar déficit de agudeza visual, sino dolor de cabeza o cansancio relacionados con el esfuerzo continuado de acomodación que debe realizar el músculo ciliar para lograr un correcto enfoque. En los adultos suele existir déficit de visión cercana y con el paso de los años se puede afectar la lejana. Se trata mediante el uso de gafas correctoras.25

 

Astigmatismo

Es un defecto de refracción que se produce debido a que existe diferente capacidad de refracción entre dos meridianos oculares y en consecuencia los objetos se ven desenfocados. Generalmente está originado por una curvatura irregular en la zona anterior de la córnea, de tal forma que la refracción del meridiano vertical es diferente a la del horizontal. Se trata mediante la utilización de gafas con lentes correctoras.

Presbicia

La presbicia también llamada vista cansada, comienza alrededor de los 40 años y alcanza su máxima evolución después de los 60. Consiste en la perdida progresiva y gradual de la elasticidad del cristalino que se manifiesta por dificultad para ver con claridad los objetos cercanos. Una persona con presbicia necesita alejar un texto más de 33 cm de los ojos para poder leer, a esa distancia muchos caracteres no se distinguen con claridad.

Para garantizar una buena visión de los objetos cercanos, el cristalino debe cambiar de forma y hacerse más esférico para aumentar su poder de refracción, cuando ya no puede hacerlo, la visión cercana se hace borrosa, sin embargo la visión de lejos sigue siendo buena.

Puede corregirse con el uso de lentes oftálmicas, que realizan el trabajo de convergencia de las imágenes tal como lo hacían antes los ojos. Cuando existe otro problema de visión añadido, como la miopía, pueden utilizarse lentes bifocales o multifocales que permiten ver de manera correcta a diferentes distancias, por ejemplo para ver bien un monitor y un texto que está más próximo.




clasificacion de las lentes

 

 

La electricidad y el magnetismo están estrechamente relacionados y son temas de gran importancia en la física. Usamos electricidad para suministrar energía a las computadoras y para hacer que los motores funcionen. El magnetismo hace que un compás o brújula apunte hacia el norte, y hace que nuestras notas queden pegadas al refrigerador. Sin radiación electromagnética viviríamos en la obscuridad ¡pues la luz es una de sus muchas manifestaciones!.

electrostatica

La electrostática es la rama de la Física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica, es decir, el estudio de las cargas eléctricas en reposo, sabiendo que las cargas puntuales son cuerpos cargados cuyas dimensiones son despreciables frente a otras dimensiones del problema. La carga eléctrica es la propiedad de la materia responsable de los fenómenos electrostáticos, cuyos efectos aparecen en forma de atracciones y repulsiones entre los cuerpos que la poseen.

ELECTROSCOPIO

El electroscopio es un instrumento que se utiliza para establecer si un cuerpo está electrizado y el signo de su carga.

Los átomos que están presentes en todos los cuerpos, están compuestos de electrones, protones y neutrones.Los tres tienen masa pero solamente el electrón y el protón tienen carga. El protón tiene carga positiva y el electrón tiene carga negative.Si se colocan dos electrones (carga negativa los dos) a una distancia "r", estos se repelerán con una fuerza "F".Esta fuerza depende de la distancia "r" entre los electrones y la carga de ambos. Esta fuerza "F" es llamada Fuerza electrostática.Si en vez de utilizar electrones se utilizan protones, la fuerza será también de repulsión pues las cargas son iguales. (positivas las dos)La fuerza cambiará a atractiva, si en vez de poner dos elementos de carga igual, se ponen se cargas opuestas. (un electrón y un protón)El que la fuerza electrostática sea de atracción o de repulsión depende de los signos de las cargas:
- cargas negativas frente a frente se repelen
- cargas positivas frente a frente se repelen

Cargas iguales se repelen - Fuerza electrostática - Electrónica Unicrom

- carga positiva frente a carga negativa se atraen

Cargas diferentes se atraen - Fuerza electrostática - Electrónica Unicrom

LEY DE COULOMB

La ley de Coulomb puede expresarse como:

La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa y tiene la dirección de la línea que las une. La fuerza es de repulsión si las cargas son de igual signo, y de atracción si son de signo contrario.

La constante de proporcionalidad depende de la constante dieléctrica del medio en el que se encuentran las cargas.

DIFERENCIA DE POTENCIAL ELECTRICO

==> Potencial eléctrico
→ Es una magnitud escalar que se aplica para medir el campo eléctrico en cada uno de sus puntos
→ Definición operacional: "Potencial del campo eléctrico en un punto "A" es el resultado de dividir, el trabajo realizado por las fuerzas de campo eléctrico para desplazar la carga de prueba "q", desde "A" hasta el infinito (donde se supone que el potencial eléctrico es nulo); entre el valor de la carga de prueba "q", es decir ==> VA = (TA → oo)/q
→ El potencial eléctrico puede ser positivo o negativo, según lo sea la carga Q que genera el campo eléctrico

==> Diferencia de Potencial eléctrico
→ Tiene el mismo significado físico del potencial eléctrico, sol que, se habla de un trabajo eléctrico realizado entre dos puntos a distancia finita de la carga que genera el campo
→ Definición operacional: "La Diferencia de Potencial entre dos puntos "A" y "B" de un campo eléctrico, es el resultado de dividir, el trabajo realizado por las fuerzas de campo eléctrico para desplazar la carga de prueba "q", desde "A" hasta "B" (donde se supone que el potencial eléctrico no necesariamente sea nulo); entre el valor de la carga de prueba "q", es decir ==> VA - VB = (T A → B)/q

→ La diferencia de potencial puede ser positiva, negativa o nula, según lo sea el trabajo eléctrico para desplazar la carga de prueba en el campo en cuestión.
 

 

CAMPO ELECTRICO

El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica \vec F dada por la siguiente ecuación:

\vec F = q \vec E

En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.2

Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.

Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales; \vec E =\vec E_1 +\vec E_2 + \vec E_3 .

INTENSIDAD DE CORRIENTE

 

 

Intensidad de Corriente eléctrica.

La corriente eléctrica es la circulación de cargas eléctricas en un circuito eléctrico.

La intensidad de corriente eléctrica(I) es la cantidad de electricidad o carga eléctrica(Q) que circula por un circuito en la unidad de tiempo(t). Para denominar la Intensidad se utiliza la letra I y su unidad es el Amperio(A).
Ejemplo: I=10A

La intensidad de corriente eléctrica viene dada por la siguiente fórmula:

RESISTENCIA ELECTRICA

Se le llama resistencia eléctrica a la igualdad de oposición que tienen los electrones para desplazarse a través de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que ahora lleva su nombre. La resistencia está dada por la siguiente fórmula:

 R = \rho { \ell \over S }

LEY DE OHM

La ley de Ohm dice que la intensidad de la corriente que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es la inversa de la resistencia eléctrica.

La intensidad de corriente que circula por un circuito dado es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo. Cabe recordar que esta ley es una propiedad específica de ciertos materiales y no es una ley general del electromagnetismo como la ley de Gauss, por ejemplo.

ecuación

 I=  {G} {V} = \frac{V}{R}

MEDICIONES ELECTRICAS

Las mediciones eléctricas son los métodos, dispositivos y cálculos usados para medir cantidades eléctricas. La medición de cantidades eléctricas puede hacerse al medir parámetros eléctricos de un sistema. Usando transductores, propiedades físicas como la temperatura, presión, flujo, fuerza, y muchas otras pueden convertirse en señales eléctricas, que pueden ser convenientemente registradas y medidas.

Voltio (V, unidad de potencial eléctrico y fuerza electromotriz)

El voltio se define como la diferencia de potencial a lo largo de un conductor cuando una corriente con una intensidad de un amperio utiliza un vatio depotencia:

 

V=\frac{J}{C}=\dfrac{\mbox{m}^2 \cdot \mbox{kg}}{\mbox{s}^3 \cdot \mbox{A}}

Ohmio (Ω, unidad de resistencia eléctrica)

Un ohmio es la resistencia eléctrica que existe entre dos puntos de un conductor cuando una diferencia de potencial constante de 1 voltio aplicada entre estos dos puntos produce, en dicho conductor, una corriente de intensidad 1 amperio, cuando no haya fuerza electromotriz en el conductor:

\Omega = \dfrac{\mbox{V}}{\mbox{A}} = \dfrac{\mbox{m}^2 \cdot \mbox{kg}}{\mbox{s}^{3} \cdot \mbox{A}^2}

Conexión de un amperímetro en un circuito.

El amperio o ampere (símbolo A), es la unidad de intensidad de corriente eléctrica. Forma parte de las unidades básicas en el Sistema Internacional de Unidades y fue nombrado en honor al matemático y físico francés André-Marie Ampère. El amperio es la intensidad de una corriente constante que, manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a 2×10-7 newton por metro de longitud.

\mathrm{1 \,A= 1 \frac{\,C}{s}} \,

CIRCUITO EN SERIE

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos están unidos para un solo circuito (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida del dispositivo uno se conecta a la terminal de entrada del dispositivo siguiente.

Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.

En función de los dispositivos conectados en serie, el valor total o equivalente se obtiene con las siguientes expresiones:

  • Para Generadores (pilas)
TE Compon 07.svg TE Compon 07.svg TE Compon 07.svg
TE Compon 05.svg TE Compon 05.svg TE Compon 05.svg

   {V_{T}} = {V_1} + {V_2} + ... + {V_n}\,
 

   {I_{T}} = {I_1} = {I_2} = ... = {I_n}\,
 

 

 

 

 

  • Para Resistencias
TE Compon 01.svg TE Compon 01.svg TE Compon 01.svg
 

   {R_{T}} = {R_1} + {R_2} + ... + {R_n}\,
 
 
 

 

  • Para Condensadores
TE Compon 04.svg TE Compon 04.svg TE Compon 04.svg

   {1 \over C_{T}} = {1 \over C_1} + {1 \over C_2} + ... + {1 \over C_n}\,

 

  • Para Interruptores
TE Interu 1A.svg TE Interu 1B.svg TE Interu 1C.svg
 

 

 

 

 

CI

CIRCUITO EN PARALELO

El circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.

Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo, gastando así menos energía.

En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones

  • Para generadores
 
TE Conex 05.svg TE Compon 07.svg TE Conex 09.svg
TE Conex 07.svg TE Compon 07.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 07.svg TE Conex 14.svg
TE Conex 05.svg TE Compon 05.svg TE Conex 09.svg
TE Conex 07.svg TE Compon 05.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 05.svg TE Conex 14.svg

   {V_{T}} = {V_1} = {V_2} = ... = {V_n}\,

   {I_{T}} = {I_1} + {I_2} + ... + {I_n}\,
  • Tambien Para Resistencias
TE Conex 05.svg TE Compon 01.svg TE Conex 09.svg
TE Conex 07.svg TE Compon 01.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 01.svg TE Conex 14.svg

   {1 \over R_{T}} = {1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}\,

 

 

 

 

 

 

 

 

 

  • Para Condensadores
TE Conex 05.svg TE Compon 04.svg

TE Conex 09.svg

TE Conex 07.svg TE Compon 04.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 04.svg TE Conex 14.svg

   {C_{T}} = {C_1} + {C_2} + ... + {C_n}\,

 

 

 

 

 

 

 

 

 

 

  • Para Interruptores
TE Conex 05.svg TE Interu 1A.svg TE Conex 09.svg
TE Conex 07.svg TE Interu 1B.svg TE Conex 11.svg
TE Conex 14.svg TE Interu 1C.svg

TE Conex 14.svg